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The focus of this research was to develop a model based solely on molecular descriptors capable of
predicting fish bioconcentration factors (BCF). A fish BCF database was developed from high-quality,
regulatory agency reviewed studies for pesticides based on the same laboratory protocol and the
same fish species, Lepomis macrochirus. A commercially available software program was used to
create a quantitative structure-activity relationship (QSAR) from 93 BCF studies based on unique
molecules. An additional 16 molecules were used to test the accuracy of QSAR model predictions
for a variety of pesticide classes. Regression of the measured versus predicted log BCF values yielded
a regression coefficient of 0.88 for the validation data set. On the basis of the results from this research,
the ability to predict BCF by a QSAR regression model is improved using a fully structurally derived
model based solely on structural data such as the number of atoms for a given group (e.g., -CH3)
or the local topology of each atom as derived from electron counts. Such descriptors provide insightful
information on a molecule’s potential BCF behavior in aquatic systems.
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INTRODUCTION

Bioconcentration factor (BCF) data are currently needed for
many chemical regulatory programs. New laws resulting from
enactment of the United Nations Stockholm Convention Per-
sistent Organic Pollutants Protocol (POPs) in May 2004 have
led to significant new activity in the assessment of persistent,
bioaccumulative, toxic substances (PBTs). Several committees,
notably the Health and Environmental Sciences Institute (HESI)
Bioaccumulation Assessment Project Committee, active in this
work have explored the challenges involved with accurately
assessing new and existing chemicals for their bioaccumulation
potential. Before 2003, common methods for estimating or
measuring BCF values were limited to regression models that
often used the octanol-water partition coefficient (log Kow) as
the only input or expensive OECD 305 standard fish BCF
guideline studies (1).

Some of the earliest attempts at BCF prediction have been
simple regression relationships based on physically measured
properties, which are not truly structural in nature. Therefore,
one of the foci of the HESI committee was to better define the
physical and structural factors that affect bioavailability, absorp-
tion, or metabolism of a chemical to more accurately predict
bioconcentration in fish. A review paper by Barber (2) focused

on fish bioconcentration models summarizes the many efforts
to estimate BCF using simple regression relationships.
Although the various methods described (2) are listed as being
QSAR-based, none actually were structure-activity relation-
ships unless adjustment factors for certain chemical moieties
can be considered structural. Because current regression
approaches for estimating BCF values inadequately charac-
terize the potential of some chemical classes to bioaccumu-
late, many compounds could be misclassified as bioaccumu-
lative using these methods if they are integrated into
regulatory or product development evaluations. Therefore,
it is important to better identify and characterize the dominant
molecular descriptors driving bioconcentration and bioaccu-
mulation. One of the goals for this project was to develop a
QSAR model that could be used in the evaluation and
screening of compounds molecularly similar to those pesti-
cides used to develop the model in this work. The new model
could then be used by industry or government agencies
developing and reviewing new and existing chemicals.
Predicting the BCF of a substance is a very important factor
for deciding its safety in the environment. The earlier in the
development process properties such as BCF are known, the
sooner proactive decisions can be made about the use,
development, and manufacture of a chemical. The goal of
this work was to develop a fully structural model (without
laboratory measurements) that will allow predictions of BCF.
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METHOD AND MATERIALS

To evaluate and develop structural relationships to predict BCF, a
useful data set was required. Some of the desirable attributes of a data
set were that the BCF factors were measured on the same test species
following a standardized protocol. A data set that appeared to be an
excellent choice for our purposes was the one developed for the support
of pesticide registrations in the United States. The U.S. Environmental
Protection Agency (U.S. EPA) Environmental Fate and Effects Division
(EFED) has developed an online database that reports many results
from regulatory environmental fate studies (3). The database contains
detailed compound information for herbicides, insecticides, and fun-
gicides including descriptive BCF data. This database was determined
to be of great value for the development and evaluation of a structural
BCF model because it contains high-quality data generated by following
the same protocol and using the same test species.

The BCF studies were all conducted following EPA guideline
165-4, Laboratory Studies of Pesticide Accumulation in Fish (now
OPPTS 850.1730) (4). The studies were typically conducted for 28
days unless a concentration plateau was reached earlier, which was
an indication the study could be concluded sooner. Bluegill (Lepomis
macrochirus) are the preferred species for the guideline studies;
however, not all studies used bluegill fish. When a study did not
use bluegill as the test species, it was not included in this work.
The guideline protocol requires that the fish receive chemical
exposure using a radiolabeled test substance under flow-through tank
conditions. Because the entire tank volume is replaced many times
daily, the animals are principally exposed to parent compound only.
For each residue determination interval, the fish are separated into
edible and viscera portions for determination of BCF. Whole fish
BCF values are typically determined as well and were the end point
used for this model development activity. The EPA database
consisted of many compounds with BCF data potentially for this
analysis. However, the subset we used for this work consists of 93
molecules (Table 1) with log BCF values ranging from -0.92 to
4.0. The criteria for the compounds used in our subset were (A)
whole fish BCF values were measured, (B) bluegill was the test
species, and (C) the test was conducted for about 28 days. The BCF
values in the data set are plotted in Figure 1 as an indication that
the molecules selected were well distributed throughout the stated
range.

To set a background for this work, we examined one of the standard
methods commonly used to estimate fish BCF values, the Veith(5)
regression (Log BCF ) 0.76 log Kow - 0.23). To evaluate the
effectiveness of regression methods for predicting the fish BCF values
for this data set, we chose the Veith bluegill regression to be
representative of the effectiveness of similar BCF regression methods
in general. The only input to this type of BCF regression is the
compound-specific log Kow value (Log P). For the evaluation of the
Veith equation to occur, log Kow values had to be obtained. The
measured Log Kow value for each compound (Table 1) was obtained
from the FOOTPRINT database housed at the University of Hertford-
shire (6). Using the measured log Kow values in the Veith equation, an
r2 of 0.50 was achieved between the predicted and measured BCF values
(Figure 2). Alternatively, a calculated log Kow value was calculated
for each molecule using MDL’s QSAR (7) software (ver. 2.3) (Table
1) and was substituted in the Veith equation to determine if a calculated
log Kow enhanced BCF predictions. An r2 of 0.48 was achieved using
the calculated log Kow values rather than the measured values (Figure
3). Statistical regression analysis of the predicted versus measured BCF
values was performed using Origin software (8).

Results from the analysis presented in Figures 2 and 3 indicate that
simple regressions based on log Kow are not capable of predicting BCF
in a reliable fashion for the current generation of agricultural chemicals.

Because standard regression approaches based on measured or
predicted log Kow alone are inadequate for recently developed com-
pounds, a more advanced method was explored for the prediction of
fish BCF values. The project objective was to develop an improved
BCF prediction model that would be a fully structural model based
only on structural characteristics of the compound and would not require
laboratory measurements to predict fish BCF values in Table 1.

Although log P values will be included in the QSAR regression, the
log P will also be a calculated value from the chemical structure.

The first step in performing the QSAR analysis was to obtain and
enter structures for each molecule in the database we used for this
evaluation. Once the structures were obtained, they were converted into
SMILES codes. For this analysis, the structural SMILES code for each
molecule was obtained directly from the National Center for Biotech-
nology Information Website (9). The SMILES codes were imported
into MDL’s QSAR (7) software (ver. 2.3). The QSAR software has a
database information system capable of creating quantitative structure-
activity relationships (QSAR) by calculating over 300 structural
descriptors. The software has various multiple-regression analysis
routines, can use a genetic algorithm, and is capable of performing
principal component analysis as well.

One of the challenges in developing a structurally based QSAR is the
selection of descriptors to use in the QSAR model beyond the calculated
log P value. The selection of molecular descriptors can be divided into
several distinct categories. The two broadest descriptor categories are two-
and three-dimensional molecular property descriptors. The two-dimensional
descriptors can be further broken down into five subcategories: simple
connectivity descriptors, connectivity valences, molecular E-state’s, kappa
shape indices, and general molecular properties. The three-dimensional
descriptors are limited to molecular measurements, such as dipole moment
and shape/dimension features.

Model Development and Validation. In addition to calculated log
P, which was always included, more than 250 molecular descriptors
were added and removed in an iterative process until the optimum
QSAR descriptors were obtained. In the estimation of fish BCF values,
it was assumed that three-dimensional descriptors would be a dominat-
ing factor in developing a useful model because active interaction with
membranes might dominate the process (10). However, in practice,
structural molecule descriptors were added and removed from model
development in an iterative process until a model optimum was
achieved.

The model development process consisted of first identifying the
best QSAR descriptors, and then several statistical regression methods
were evaluated to determine if an optimized regression model could
be achieved of the descriptors and the measured BCF values. A variety
of regression routines were used including ordinary multiple regression,
stepwise regression, all possible subsets regression, regression on
principle components, and partial least-squares regression to develop
the best predictive relationship. The regression methods were systemati-
cally tried until a best fit was obtained on the basis of the resulting
model R2 value and analysis of residuals. After the best regression model
was determined, the regression was tested with a smaller data set of
16 compounds, the regression model validation set. The regression
model validation set was not used in the initial development of the
model (Table 2) but was only used to validate the new QSAR regression
model. The process consisted of reading the validation set into the
QSAR software, generating the required molecular descriptors, and
predicting the BCF values. Regression analysis of the predicted versus
measured BCF values was performed outside the QSAR software (8).
For model validation, there are two methods typically used (11). The
first method is referred to as cross-validation. In the cross-validation
method, the molecules used to develop the model are rotated in and
out of the regression in an attempt to validate the regression. The cross-
validation approach is not considered to be robust, but it often gives
an indication of the model’s potential for prediction. The second method
used is referred to as external-validation, in which a second independent
data set is used in an attempt to validate the model. The external-
validation method is considered to be more robust that the cross-
validation method and is the method we used in this paper with the
data set of 16 compounds (11).

RESULTS AND DISCUSSION

Model Development. The data used for the model develop-
ment consisted of 93 molecules with log BCF values ranging
from -0.92 to 4.0, which were well distributed throughout that
range (Table 1 and Figure 1). For development of this model,
based on the descriptors selected, the ordinary multiple-
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regression method provided the best solution as evidenced by
evaluating regression coefficient values and residuals. The final
regression relationship developed can be found in eq 1.

Log BCF) 0.2432 × Log P- 1.601 × ABSQon-
0.9529 × MaxNeg- 55.85 × xch10+ 1.392 × xvp10+

168.7 × xvch9+ 0.09185 × SaasC_acnt-
2.861 × SssNH_acnt+ 0.5661 × SssO_acnt+

0.7797 × SdssS_acnt+ 1.078 × SssNH-
1.886 × SssssNp+ 0.2769 × SdsssP+

0.04637 × SHBint6+ 0.2835 × SHBint2_Acnt+
0.09498 × SHBint6_Acnt+ 1.45606 (1)

We have included a calculated Log P as a descriptor in the
QSAR model. This inclusion is because the simple partitioning
of compounds toward either octanol or water has been a useful
predictor of a molecule’s tendency to move to tissue. However,
using Log P alone is not predictive enough (Figures 2 and 3).
Kow or the Log P results have been viewed mechanistically as
a predictor of a molecule’s tendency either to partition to lipids
or to be hydrophilic. However, beyond the correlation of Log
P with lipophilicity, there are molecular reasons for suchTa
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Figure 1. Distribution of log BCF values in the model development
(training) data set.

Figure 2. Veith bluegill model BCF predictions using laboratory-measured
log Kow values compared to the measured BCF values.
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phenomena. The additional factors added to the QSAR model
can provide insight into the molecular reasons for hydrophilic/
lipophilic behaviors.

The resulting regression coefficient value for the eq 1
relationship was R2 ) 0.80, n ) 93 (Origin Laboratories) (8).
To determine if each model descriptor provided a contribution
to the regression model, data were imported into Microsoft
Office Excel 2003 Analysis ToolPak (12), and ANOVA was
performed on the regression model. Results from the ANOVA
indicate that all variables were significant at the 95% probability
level (P ) 0.0429-0.0000000427), and the strong R2 ) 0.80
was confirmed. Residuals from the regression relationship were
analyzed and found to be normally distributed and followed
the guidance for model selection as described by Aldworth and
Jackson (13). A graphical presentation of the predicted to
measured BCF results based on this model can be found in
Figure 4.

Because QSAR software may require several different
descriptors to describe, for example, the location of a nitrogen
functional group on ring 2 of a three-ring benzyl structure and
require descriptors to describe charge on the ring, the number
of additional structural descriptors beyond log P may seem to

be large compared to traditional BCF regression relationships.
However, as the descriptive power of QSAR software increases,
so do the number of descriptors that allow these software
programs to describe small differences in structures that are
important for determining activity. Furthermore, as the diversity
of molecular structures increases, it is clear that in order to obtain
a descriptive model for a large variety of different molecule
types (linear molecules, one-, two-, or three-ring systems), a
large number of molecular attributes (descriptors) will be
required. Thus, if models are developed that are to be robust in
predictive capability, then larger numbers of molecular descrip-
tors will be required so that various structure-activity relation-
ships can described.

One of the challenges in performing structural analysis is
ensuring that the final model descriptors make sense and
reasonably influence model predictions. In addition to the
summary of model descriptors found in Table 3, a summary of
molecular descriptors found in the regression QSAR (eq 1) is
briefly given. The QSAR descriptors used in this model fall
into two general categories. The descriptors can be classified
first as simple counting descriptors such as how many amine
groups are on the molecules. The first category of descriptors

Figure 3. Veith bluegill model BCF predictions using structurally calculated
log Kow values compared to the measured BCF values.

Figure 4. Predicted log BCF values using the structurally based model
compared to the measured BCF values.

Figure 5. Distribution of log BCF values in the model validation data
set.

Figure 6. Predicted log BCF values using the structurally based model
compared to the measured BCF values for the validation data set.
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includes SaasC_acnt, SssNH_acnt, SssO_acnt, xch10 (which is
a chi index), and SdssS_acnt. The second category of descriptors
can be categorized as those that communicate a particular aspect
of molecular or functional group charge. The descriptors that
communicate charge could be further separated into two
categories. Descriptors both count and provide charge informa-
tion and simply convey “gross” molecular charge information.
The descriptors in the latter group include the ABSQon and
MaxNeg descriptors. Descriptors that convey count and valence
(charge) information include all of the E-state descriptors
SssNH, SssssNp, SdsssP, and SHBint6. E-state descriptors are
used to help quantify electron accessibility at each structural
component (e.g., bond) and represent the relative accessibility
of those electrons to participate in intermolecular interactions.
Two more variables that provided information on hydrogen bond
interaction are the SHBint2_Acnt and SHBint6_Acnt descriptors.
Two other variables that convey charge information are the chi
index descriptors xvp10 and xvch9, which include not only
counts but also the characteristics of the atom being described.

Because our regression relied on two-dimensional descriptors,
many were required to properly describe the wide range of
molecules and have predictive capability. We additionally tried
regressing molecular weight as a variable, but that descriptor
did not provide improvement to any of the models we
developed. Furthermore, whereas Log P or octanol/water
coefficients have shown positive correlation to BCF previous-
ly (14-16) and was included in the final QSAR, it alone as a
single descriptor was not capable of predicting BCF for these
compounds. If the process of bioconcentration or bioaccumu-
lation can be described as an across the membrane phenomenon,
then the fact that the majority of the QSAR model descriptors

are relating to molecular valence or charge in some fashion is
not surprising and might have been expected. Cell membranes
are typically viewed as lipid bilayer structures. The lipid bilayer
structure is normally an alkyl chain that serves to hold the
membrane structure together by van der Waals forces as well
as by other bonding phenomena (electrostatic forces). Although
there are still many ideas of how nonpolar compounds move
across membranes, it is well-known that polarity, van der Waals
forces, and molecular charge all have a role.

Model Validation. To evaluate the ability of the regression
to predict measured BCF values for classes of chemicals similar
to those in the training database, an additional set of 16
molecules that were not used in the development of the original
relationship were run through the regression via the QSAR
software. The range of measured BCF values may be observed
as a plot in Figure 5. The goal of this part of the work was to
evaluate the ability of the QSAR regression model to predict
the BCF of other compounds. If the QSAR model is able to
predict the BCF values of the additional molecules, confidence
is gained that the method could be an improvement over simple
regression methods. Results from running the validation mol-
ecules through the regression model can be found in Figure 6.
The model developed in eq 1 was able to predict Log BCF for
the 16 molecules in the validation set, yielding an r2 ) 0.88.

On the basis of an examination of the methods proposed in
the literature for predicting BCF, it is clear that most are simple
regressions using a laboratory measure of Log P. The Log P
values used in this QSAR regression were a molecularly
calculated property. Log P does provide indirect information
about a molecule’s hydrophilic or lipophilic properties. These

Table 2

no. name Log BCF Log P ABSQon MaxNeg xch10 xvp10 xvch9 SaasC_acnt SssNH_acnt SssO_acnt SdssS_acnt

1 boscalid 1.85 2.5555 4.2917 0.96897 -0.4328 0 0.080155 0 6 1 0
2 metconazole 2.08 1.9401 3.6361 0.80863 -0.38801 0 0.2446 0 2 0 0
3 pyraclostrobin 2.69 2.469 3.3564 1.4989 -0.35417 0 0.072418 0 5 0 3
4 diflufenzopyr 1.09 0.54545 2.6297 1.9525 -0.39448 0 0.025713 0 5 2 1
5 pyradiben 2.26 2.6401 5.8066 0.70786 -0.3873 0 0.25296 0 2 0 0
6 cyfluthrin 2.93 2.9217 5.4834 1.1475 -0.35308 0 0.095349 0 4 0 2
7 terbufos 2.83 2.5197 4.2555 0.47007 -0.23504 0 0 0 0 0 2
8 2,4-D 3.01 2.7355 2.3947 0.98095 -0.35252 0 0.003368 0 3 0 1
9 oxyfluorfen 3.11 3.4846 4.3575 0.85117 -0.31314 0 0.047475 0 6 0 2
10 imidacloprid 0.70 0.7196 1.1681 1.3851 -0.34365 0 0.040027 0 2 1 0
11 paclobutrazol 1.64 2.0668 6.4874 1.6072 -0.39089 0 0.21517 0 4 0 1
12 oxamyl 0.30 0.91363 0.68983 1.624 -0.39037 0 0 0 0 1 1
13 parathion 2.63 2.3778 2.8848 0.91415 -0.25281 0 0.037732 0 2 0 3
14 permethrin 2.79 3.2091 5.8166 0.96556 -0.35526 0 0.098988 0 3 0 2
15 phosalone 2.56 2.8653 3.9776 1.2974 -0.38792 0 0.34595 0.002196 3 0 3
16 imazapic -0.96 0.12313 1.5656 1.85 -0.3917 0 0.032092 0 3 1 0

no. name SssNH SssssNp SdsssP SHBint6 SHBint2_Acnt SHBint6_Acnt

1 boscalid 0 2.8844 0 0 0 1
2 metconazole 0 0 0 0 0 0
3 pyraclostrobin 0 0 0 0 0 0
4 diflufenzopyr 0 4.3832 0 0 0 3
5 pyradiben 0 0 0 0 0 0
6 cyfluthrin 0 0 0 0 0 0
7 terbufos 0 0 0 -2.0762 0 0
8 2,4-D 0 0 0 0 15.234 1
9 oxyfluorfen 0 0 0 0 0 1
10 imidacloprid 0 2.1862 0 0 0 4
11 paclobutrazol 0 0 0 0 0 0
12 oxamyl 0 2.2102 0 0 20.622 1
13 parathion 0 0 0 -2.801 0 1
14 permethrin 0 0 0 0 0 0
15 phosalone 0 0 0 -2.4452 0 0
16 imazapic 0 2.6421 0 0 0 2
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hydrophilic or lipophilic properties can further be predictive of
sorption to tissue, soil, or sediment.

The QSAR regression model presented in eq 1 is capable of
predicting BCF on the basis of molecular structural properties
for chemical classes examined in the data sets. Several simpler
models were developed in an attempt to predict BCF as well.
However, the simpler models provided a poorer fit and less
confidence that such models would produce reasonably accurate
BCF estimates for the range of molecules that might possibly
be examined in regulatory review programs or during chemical
development. Whereas eq 1 has many descriptors, it is clear
from our analysis that many descriptors need to be included in
order to have a robust method. One departure from many
previous modeling approaches for predicting BCF is that this
model is totally structurally based (there were no experimentally
measured values for the compound descriptors). When the
potential for any molecule to accumulate in an aquatic system
is assessed, many factors that a BCF value cannot accurately
describe need to be considered. The BCF values used to develop
this method were based on constant-exposure, flow-through tank
systems that contain only fish and laboratory-quality water (no
sediment or plants, etc.). Depending on the type of compound
assessed (pesticide, surfactant, etc.), exposure conditions like
those in the standard guideline systems will not occur in natural
systems. Therefore, this QSAR model provides a prediction
based on these artificial conditions (constant exposure, flow-
through tank). The model does not consider the many environ-
mental factors that may greatly influence the estimation of BCF
in the calculation of the end points relevant for field exposures.
Factors such as dietary preference, variable environmental
conditions (e.g., temperature, carbon black, or humic materials),
and physiochemical properties such as hydrolysis, photolysis,
or partitioning are not accounted for. Additional factors such
as depuration and differential spatial/temporal exposure regimens
to organisms as they naturally move through their environment
are not considered either. Furthermore, it is evident that
classifying compounds using static conditions or based on Kow

prediction approaches can be inadequate to identify substances
with a potential to bioaccumulate in food webs (17, 18). A
further caution on the application of the QSAR model presented
in eq 1 is the necessary understanding of the types of molecules
used in the development of the model. Knowledge of the
similarity of the new chemical under evaluation to the com-
pounds used to develop the model must be understood before
decisions based on the predicted BCF values can be made.

Nevertheless, properly interpreted, the prediction of BCF by
the model developed in this work can provide insightful
information on the potential behavior of many new and existing
classes of pesticides and similar chemistries in aquatic systems.
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